Showing posts with label concepts. Show all posts
Showing posts with label concepts. Show all posts

Monday, April 27, 2015

Modeling

This is a great video that tells about the strategy I'm trying to use in physics:

Notice how the modeling concept works through these phases:
  • Model Development 
  • Model Deployment 
  • Model Failure 
He talks about how modeling goes from the concrete to abstraction. I once tutored a student in Physics who had been a straight A student until Physics Senior Year. It turned out his teacher showed them how to derive equation after equation to define physics concepts, but the only labs they did were after the test, as a reward. The student and I figured out together how the concepts worked, and he started getting A's again!

For more information, look at the American Modeling Teachers' Association (AMTA), where members can find a full curriculum for Physics, Chemistry, Physical Science, and now also Biology. The speaker also mentions the Modeling website at Arizona State University, where the strategy originated.

Thursday, May 22, 2014

Next Generation Science Standards (NGSS)

I am getting more and more excited about the NGSS, the science class addendum to Common Core, which addresses the language and math part of our teaching.The NGSS are not just a list of science standards of concepts students should know. A typical "old" California standard looks like this one:

Motion and Forces

1. Newton's laws predict the motion of most objects. As a basis for understanding this concept:
  • Students know how to solve problems that involve constant speed and average speed.
Notice the students are expect to "know" things - which then can easily be tested on a multiple choice test (except that my students this year couldn't show their knowledge that way anyway!)
This is what a similar part of the NGSS looks like:

HS-PS2 Motion and Stability: Forces and Interactions

Students who demonstrate understanding can: HS-PS2-1. Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.]
Students here demonstrate their understanding (not what they know) by doing things, like analyzing data, which involves asking questions, making models, planning and carrying out experiments, collecting data to analyze, etc. In other words, students will be doing what scientists and engineers do to figure things out.
You can read the entire standard here : http://www.nextgenscience.org.(The standard can be confusing at first, because it includes the Practices, like Asking questions and Making Models, Cross-cutting Concepts, like Patterns and Cause and Effect, and Disciplinary Core Ideas, like the one shown above on Forces and Interactions.

Paul Anderson has made a fantastic series of videos produced by Bozeman starting with this one, which includes the playlist of all 59 videos:
I recommend doing a couple a day (as I'm doing), starting with the Practices and Cross-cutting Concepts, then skipping to the Disciplinary Core Ideas that interest you (Physical Science and Chemistry, mostly, for me.)
I hope you enjoy this new world of teaching! I think this would also be useful to teachers who are not in a state that is implementing them (like California) because the ideas are so powerful.