Sunday, May 11, 2014


My average student in Conceptual Physics does not like mathematics. Many of them shudder at the sight of a number. But I have been working hard to get them accustomed to numbers and formulas, so by now most students - with a little thought - know that they should divide if they think the result should be smaller and multiply if it should be larger (we're not into things like decimals and fractions very much.) Most of them can take a formula like F=m x a and find acceleration - if they think about it. The thinking part doesn't come easily, though.

I thought, however, that most could read. They read aloud somewhat fluently, so I thought they also knew what they were reading.

I should have caught on to the problem when I was asked to period sub for a special ed English class with a couple of my students. I was told that the aide was good and could run the class; they just needed a certified teacher present. The students were to take turns reading a text out loud and then use vocabulary words from the text in various ways. But I could hear immediately that they didn't have a clue what they were reading about. So I stopped the aide and asked if I could step in and give the students some background information about the text, which the students were quite interested in hearing about. There were NO questions about whether they understood the text in their packet - only vocabulary activities.

Last fall I made the mistake of getting excited about Mastery Learning. I enthusiastically created a lot of scaffolded reading organizers for every 3-4 pages of Conceptual Physics (earlier edition), as well as other guidelines, and a bunch of 5-question quizzes - 3-4 versions for each reading section. Some kids were delighted and quickly worked their way through all the quizzes and got great scores - some of these had been trouble-makers or had poor grades before. I - and my supervisor - were delighted. But then I got the flu, followed by Thanksgiving and some planned elective surgery, where the sub could manage the quizzes, but not grade them, or go over them personally with each student. When I got back, I discovered to my chagrin that some students hadn't gotten beyond the first quiz, while others had completed 5 or 6. Some were just goofing off, texting or checking Facebook. I had lost more than half the class while I was out.
which seemed to be a great way to get the kids to actually read and comprehend the textbook,

By then it was close to the end of the semester, so I arranged for an Authentic (no reading) assessment, where they created an activity that showed that they understood a particular randomly drawn concept and could explain it to others orally. This was a great success. Everyone felt proud that they'd learned something and pretty much everyone passed the semester - and Admin was impressed.

This semester I started getting more and more new students who came back to us from the continuation high school or elsewhere, often with a semester of Earth Science, not Conceptual Physics. And a group of SPED students were also moved into 2 of my classes, with some sporadic aide help. I had to start from scratch, with different materials, so they weren't aware of the repeated content. Everything was Inquiry based, with interspersed activities and computer simulations. I rewrote materials I found online to fit what I thought was their reading level, and we started with a new method. However, they did not follow the inquiry sequentially, instead picked the questions they figured were "easy", because - they said - their English teacher had told them to approach things that way. I kept writing "Read the questions, do them in order..." when I graded packets, but they didn't.

Finally a book, I Read It, but I Don't Get It: Comprehension Strategies for Adolescent Readers by Cris Tovani, finally gave me the answer to their problems: they think they can read, but they are only "fake reading." They can read the words, they know the vocabulary, but it just doesn't make sense. Tovani suggested a variety of organizers to help them "get it." 

When I discovered the perfect article to have them try it out, a short article about how wind energy is generated (using technology like gears and generating that we've been studying) and a simple vocabulary, I gave them the article and one of Tovani's organizers, with which they were to read the article paragraph by paragraph, writing any new vocabulary words in the first space, and what they'd learned in the middle. I even included a space to draw a picture if they could figure things out by drawing them first. 

But many of the students did as they've evidently been doing in ELA: they skimmed the whole article (highlighting about 90% of it); then they wrote bolded words and headings from the text as "New Vocabulary" and provided sentences using those words, either directly quoting part of the context, or not having much connection with the context in the article - in the next column. The picture column many used for artwork that was rarely connected to the article, like pictures of tables and chairs to define "capacity" - as in "the capacity of this restaurant ..." not "the capacity of wind-generated electricity". At most a third wrote about what they had learned from the text. Some repeated "I learned about [heading of paragraph.]" 

At least I now know that this is where I start next year. Students will learn to use the organizer correctly in the first week, reading a short article of interest to them and relevance to what we are about to study. I will consider it a major goal of my teaching that the students can read for content, not just learn isolated vocabulary words. Front-loading vocabulary is of no use; they have to get the words from the context. 

As my first full year of teaching science comes to a close I am reflecting on what worked and what didn't. 
  • I still like the idea of mastery learning, but they have to know how to read for content before that will work.
  • Inquiry learning is imperative, but they have to know how to work together in their groups, with shifting roles of manager, scribe, spokesperson and quality control, among others (which I learned from POGIL training.)
  • Students have to learn how to work their way through inquiry based packets in the order given, and to read whatever background and summative material is provided before continuing.
  • Activities must come first, and theory refers to activities. But the students must be aware of how the activity fits into the theory. 

No comments:

Post a Comment